Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Otorhinolaryngology Head and Neck Surgery ; (12): 208-212, 2008.
Article in Chinese | WPRIM | ID: wpr-248201

ABSTRACT

<p><b>OBJECTIVE</b>To explore the mechanisms of the influx of calcium ions during the activation of ACh-sensitive BK channel (big conductance, calcium-dependent potassium channel) in type II vestibular hair cells of guinea pigs.</p><p><b>METHODS</b>Type II vestibular hair cells were isolated by collagenase type IA. Under the whole-cell patch mode, the sensitivity of ACh-sensitive BK current to the calcium channels blockers was investigated, the pharmacological property of L-type calcium channel activator-sensitive current and ACh-sensitive BK current was compared.</p><p><b>RESULTS</b>Following application of ACh, type II vestibular hair cells displayed a sustained outward potassium current, with a reversal potential of (-70.5 +/- 10.6) mV (x +/- s, n = 10). At the holding potential of -50 mV, the current amplitude of ACh-sensitive potassium current activated by 100 micromol/L ACh was (267 +/- 106) pA (n = 11). ACh-sensitive potassium current was potently sensitive to the BK current blocker, IBTX (iberiotoxin, 200 nmol/L). Apamin, the well-known small conductance, calcium-dependent potassium current blocker, failed to inhibit the amplitude of ACh-sensitive potassium current at a dose of 1 micromol/L. ACh-sensitive BK current was sensitive to NiCl2 and potently inhibited by CdCl2. NiCl2 and CdCl2 showed a dose-dependent blocking effect with a half inhibition-maximal response of (135.5 +/- 18.5) micromol/L (n = 7) and (23.4 +/- 2.6) micromol/L (n = 7). The L-type calcium channel activator, (-) -Bay-K 8644 (10 micromol /L), mimicked the role of ACh and activated the IBTX-sensitive outward current.</p><p><b>CONCLUSION</b>ACh-sensitive BK and L-type calcium channels are co-located in type II vestibular hair cells of guinea pigs.</p>


Subject(s)
Animals , Calcium Channels, L-Type , Guinea Pigs , Hair Cells, Vestibular , Metabolism , Large-Conductance Calcium-Activated Potassium Channels , Patch-Clamp Techniques
2.
Chinese Journal of Otorhinolaryngology Head and Neck Surgery ; (12): 286-290, 2007.
Article in Chinese | WPRIM | ID: wpr-262884

ABSTRACT

<p><b>OBJECTIVE</b>To explore the feature of the ACh-sensitive potassium current in guinea pig cochlear outer hair cells.</p><p><b>METHODS</b>Cochlear outer hair cells of guinea pigs (n=38) were isolated by collagenase type IV. Under the whole-cell patch mode, the ions nature and the pharmacological properties of the ACh-sensitive potassium current were investigated by applying the inhibitors of calcium-dependent potassium currents and the inhibitors of nicotinic ACh receptor.</p><p><b>RESULTS</b>Following application of ACh, cochlear outer hair cells displayed a rapidly activating outward potassium current with a fast desensitized kinetic and a reversal (x +/- s) potential of (-67.3 +/- 8.2) mV (n=10). At the holding potential of -50 mV, the current amplitude of ACh-sensitive potassium current activated by 100 micronmol/L ACh was (506.6 +/- 186.3) pA (n=9). ACh-sensitive potassium current was sensitive to TEA (tetraethylammonium chloride, 10 mmol/L) and potently inhibited by the small conductance calcium-dependent potassium current (SK) blocker, apamin (1 micromol/L). Iberiotoxin (IBTX), the well-known blocker of big conductance calcium-dependent potassium current (BK), failed to inhibit the amplitude of the ACh-sensitive potassium current at the dose of 200 nmol/L. The dose for half-maximal response (EC50) of the ACh-sensitive potassium current was (33.5 +/- 5.7) micromol/L (n=7). The ACh-sensitive potassium current was sensitive to the GABA (gamma-aminobutyric acid)-A receptor blocker, bicuculline, and strongly inhibited by the selective blocker of the alpha 9-nicotinic ACh receptor, strychnine. Strychnine and bicuculline showed the dose-dependent blocking effect with a half inhibition-maximal response (IC50) of (22.3 +/- 2.6) nmol/L (n=7) and (1.2 +/- 0.4) micromol/L (n=6), respectively.</p><p><b>CONCLUSIONS</b>This work provides direct evidences that the ACh-sensitive SK current was present on guinea pig cochlear outer hair cells. The activation of the ACh-sensitive SK current was most possibly mediated by a alpha 9-nicotinic ACh receptor.</p>


Subject(s)
Animals , Guinea Pigs , Hair Cells, Auditory, Outer , Metabolism , Membrane Potentials , Patch-Clamp Techniques , Potassium , Metabolism , Pharmacology , Potassium Channels , Physiology , Receptors, Cholinergic , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL